f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nsc

NAG C Library Function Document

nag zgehrd (f08nsc)

1 Purpose

nag_zgehrd (f08nsc) reduces a complex general matrix to Hessenberg form.

2 Specification

void nag_zgehrd (Nag_OrderType order, Integer n, Integer ilo, Integer ihi,
Complex a[], Integer pda, Complex tau[]l, NagError *fail)

3 Description

nag_zgehrd (f08nsc) reduces a complex general matrix A to upper Hessenberg form H by a unitary
similarity transformation: A = QHQ™. H has real subdiagonal elements.

The matrix) is not formed explicitly, but is represented as a product of elementary reflectors (see the {08
Chapter Introduction for details). Functions are provided to work with @) in this representation (see
Section 8).

The function can take advantage of a previous call to nag_zgebal (f08nvc), which may produce a matrix
with the structure:

All A12 A13
A22 A23
A33

where A;, and Aj; are upper triangular. If so, only the central diagonal block A,,, in rows and columns
i}, to 1ip;, needs to be reduced to Hessenberg form (the blocks A, and A,; will also be affected by the
reduction). Therefore the values of ¢;, and ¢;; determined by nag zgebal (f08nvc) can be supplied to the
function directly. If nag zgebal (f08nvc) has not previously been called however, then 7;, must be set to 1
and ¢, to n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

[NP3645/7] f08nsc.1

f08nsc

NAG C Library Manual

3: ilo — Integer Input
4: ihi — Integer Input
On entry: if A has been output by nag_ zgebal (f08nvc), then ilo and ihi must contain the values
returned by that function. Otherwise, ilo must be set to 1 and ihi to n.
Constraints:
ifn>0,1<ilo <ihi <n;
if n =0, ilo =1 and ihi = 0.
5: a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).
If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].
On entry: the n by n general matrix A.
On exit: A is overwritten by the upper Hessenberg matrix H and details of the unitary matrix Q.
The subdiagonal elements of H are real.
6: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraint: pda > max(1,n).
7: tau[dim] — Complex Output
Note: the dimension, dim, of the array tau must be at least max(1,n — 1).
On exit: further details of the unitary matrix Q).
8: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings
NE_INT
On entry, n = (value).
Constraint: n > 0.
On entry, pda = (value).
Constraint: pda > 0.
NE_INT 2
On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).
NE_INT 3

On entry, n = (value), ilo = (value), ihi = (value).
Constraint: if n > 0, 1 <ilo <ihi < n;
if n=0, ilo =1 and ihi = 0.

NE_ALLOC_FAIL

Memory allocation failed.

f08nsc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nsc

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed Hessenberg matrix H is exactly similar to a nearby matrix A + £, where
1Ell, < e(n)ellAll,,
¢(n) is a modestly increasing function of n, and e is the machine precision.

The elements of H themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues, eigenvectors or Schur factorization.

8 Further Comments

The total number of real floating-point operations is approximately §q2(2q + 3n), where q = i, — 4;,; if

;o = 1 and 4;; = n, the number is approximately %n?

To form the unitary matrix ¢ this function may be followed by a call to nag_zunghr (fO08ntc):
nag_zunghr (order,n,ilo,ihi,&a,pda,tau,&fail)

To apply @ to an m by n complex matrix C' this function may be followed by a call to nag zunmhr
(f08nuc). For example,

nag_zunmhr (order,Nag_LeftSide,Nag_NoTrans,m,n,ilo,ihi,&a,pda,
tau,&c,pdc,&fail)

forms the matrix product QC.
The real analogue of this function is nag_dgehrd (fO8nec).

9 Example

To compute the upper Hessenberg form of the matrix A, where

—3.97-504¢ —4.11+3.70¢ —-034+1.017 1.29 —0.86¢
0.34 —1.50¢ 1.52 —0.43¢ 1.88 —5.38; 3.36 + 0.65¢
331 —-3.85 2.50+3.45¢ 0.88 —1.08: 0.64 —1.48:

—1.10 4 0.82% 1.81 —1.59¢ 3.2541.33¢ 1.57 —3.44:

A:

9.1 Program Text

/* nag_zgehrd (£08nsc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, n, pda, tau_len;

[NP3645/7] f08nsc.3

f08nsc NAG C Library Manual

Integer exit_status=0;
NagError fail;
Nag_OrderType order;

/* Arrays */

Complex *a=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al(J-1)#*pda + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08nsc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("$*[*\n] ");

Vscanf ("$1d%*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
#else
pda = n;
#endif
tau_len = n - 1;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||
! (tau = NAG_ALLOC(tau_len, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file x/
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= n; ++3j)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,J).im);
}
Vscanf ("$*[*\n] ");

/* Reduce A to upper Hessenberg form */
f08nsc(order, n, 1, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08nsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Set the elements below the first sub-diagonal to zero =*/
for (i =1; 1 <= n - 2; ++1)
{
for (j =1 + 2; j <= n; ++j)
A(j, i).re = 0.0, A(j, i).im = 0.0;
}

/* Print upper Hessenberg form =*/

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
a, pda, Nag_BracketForm, "%7.4f",
"Upper Hessenberg form", Nag_IntegerLabels, O,
Nag_IntegerLabels, O, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

f08nsc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nsc

END:

if (a) NAG_FREE (a);

if (tau) NAG_FREE (tau);
return exit_status;

}

9.2 Program Data

f08nsc Example Program Data

4 :Value of N
(-3.97,-5.04) (-4.11, 3.70) (-0.34, 1.01) (1.29,-0.86)

(0.34,-1.50) (1.52,-0.43) (1.88,-5.38) (3.36, 0.65)

(3.31,-3.85) (2.50, 3.45) (0.88,-1.08) (0.64,-1.48)

(-1.10, 0.82) (1.81,-1.59) (3.25, 1.33) (1.57,-3.44) :End of matrix A

9.3 Program Results

f08nsc Example Program Results

Upper Hessenberg form

1 2
-3.9700,-5.0400) 1.1318,-2.5693)
-5.4797, 0.0000) 1.8585,-1.5502)
0.) 6.2673, 0.0000)
0.) 0)

.0000, 0.0000

3
4.6027,-0.14206)
4.4145,-0.7638) 4805,-1.1976
0.) .3467, 1.6579
3.)

.5619,-3.3708

0000, 0.0000
0000, 0.0000

4504,-0.0290

4

.4249, 1.7330)

.)

)

5000, 0.0000)

((-1
((-0
(- (-1
(- (2

[NP3645/7] f08nsc.5 (last)

	f08nsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	n
	ilo
	ihi
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

